Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37753907

RESUMO

Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, that is, possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system, indicating specificity for mechanisms of resistance to bortezomib. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.


Assuntos
Antineoplásicos , Microscopia , Bortezomib/farmacologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Pirazinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Apoptose
2.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695784

RESUMO

The γ-tubulin ring complex (γ-TuRC) has essential roles in centrosomal and non-centrosomal microtubule organization during vertebrate mitosis. While there have been important advances in understanding γ-TuRC-dependent microtubule nucleation, γ-TuRC capping of microtubule minus-ends remains poorly characterized. Here, we utilized biochemical reconstitutions and cellular assays to characterize the human γ-TuRC's capping activity. Single filament assays showed that the γ-TuRC remained associated with a nucleated microtubule for tens of minutes. In contrast, caps at dynamic microtubule minus-ends displayed lifetimes of ∼1 min. Reconstituted γ-TuRCs with nucleotide-binding deficient γ-tubulin (γ-tubulinΔGTP) formed ring-shaped complexes that did not nucleate microtubules but capped microtubule minus-ends with lifetimes similar to those measured for wild-type complexes. In dividing cells, microtubule regrowth assays revealed that while knockdown of γ-tubulin suppressed non-centrosomal microtubule formation, add-back of γ-tubulinΔGTP could substantially restore this process. Our results suggest that γ-TuRC capping is a nucleotide-binding-independent activity that plays a role in non-centrosomal microtubule organization during cell division.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/química , Centro Organizador dos Microtúbulos , Divisão Celular
3.
J Biol Chem ; 294(7): 2267-2278, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30573685

RESUMO

Approximately two thirds of all breast cancer cases are estrogen receptor (ER)-positive. The treatment of this breast cancer subtype with endocrine therapies is effective in the adjuvant and recurrent settings. However, their effectiveness is compromised by the emergence of intrinsic or acquired resistance. Thus, identification of new molecular targets can significantly contribute to the development of novel therapeutic strategies. In recent years, many studies have implicated aberrant levels of translation initiation factors in cancer etiology and provided evidence that identifies these factors as promising therapeutic targets. Accordingly, we observed reduced levels of the eIF3 subunit eIF3f in ER-positive breast cancer cells compared with ER-negative cells, and determined that low eIF3f levels are required for proper proliferation and survival of ER-positive MCF7 cells. The expression of eIF3f is tightly controlled by ERα at the transcriptional (genomic pathway) and translational (nongenomic pathway) level. Specifically, estrogen-bound ERα represses transcription of the EIF3F gene, while promoting eIF3f mRNA translation. To regulate translation, estrogen activates the mTORC1 pathway, which enhances the binding of eIF3 to the eIF4F complex and, consequently, the assembly of the 48S preinitiation complexes and protein synthesis. We observed preferential translation of mRNAs with highly structured 5'-UTRs that usually encode factors involved in cell proliferation and survival (e.g. cyclin D1 and survivin). Our results underscore the importance of estrogen-ERα-mediated control of eIF3f expression for the proliferation and survival of ER-positive breast cancer cells. These findings may provide rationale for the development of new therapies to treat ER-positive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fator de Iniciação 3 em Eucariotos/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Sobrevivência Celular , Receptor alfa de Estrogênio/genética , Fator de Iniciação 3 em Eucariotos/genética , Feminino , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Neoplasias/genética
4.
Breast Cancer Res Treat ; 168(1): 17-27, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128895

RESUMO

PURPOSE: Deregulated PI3K/mTOR signals can promote the growth of breast cancer and contribute to endocrine treatment resistance. This report aims to investigate raptor and its intracellular localization to further understand its role in ER-positive breast cancer. METHODS: Raptor protein expression was evaluated by immunohistochemistry in 756 primary breast tumors from postmenopausal patients randomized to tamoxifen or no tamoxifen. In vitro, the MCF7 breast cancer cell line and tamoxifen-resistant MCF7 cells were studied to track the raptor signaling changes upon resistance, and raptor localization in ERα-positive cell lines was compared with that in ERα-negative cell lines. RESULTS: Raptor protein expression in the nucleus was high in ER/PgR-positive and HER2-negative tumors with low grade, features associated with the luminal A subtype. Presence of raptor in the nucleus was connected with ERα signaling, here shown by a coupled increase of ERα phosphorylation at S167 and S305 with accumulation of nuclear raptor. In addition, the expression of ERα-activated gene products correlated with nuclear raptor. Similarly, in vitro we observed raptor in the nucleus of ERα-positive, but not of ER-negative cells. Interestingly, raptor localized to the nucleus could still be seen in tamoxifen-resistant MCF7 cells. The clinical benefit from tamoxifen was inversely associated with an increase of nuclear raptor. High cytoplasmic raptor expression indicated worse prognosis on long-term follow-up. CONCLUSION: We present a connection between raptor localization to the nucleus and ERα-positive breast cancer, suggesting raptor as a player in stimulating the growth of the luminal A subtype and a possible target along with endocrine treatment.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Mama/citologia , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Citoplasma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Mastectomia , Fosforilação , Pós-Menopausa , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Progesterona/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Tamoxifeno/uso terapêutico , Resultado do Tratamento
5.
Artigo em Inglês | MEDLINE | ID: mdl-28989978

RESUMO

Resveratrol is a nutraceutical with several therapeutic effects. It has been shown to mimic effects of caloric restriction, exert anti-inflammatory and anti-oxidative effects, and affect the initiation and progression of many diseases through several mechanisms. While there is a wealth of in vitro and in vivo evidence that resveratrol could be a promising therapeutic agent, clinical trials must confirm its potential. In this work, we reviewed the current clinical data available regarding the pharmacological action of resveratrol. Most of the clinical trials of resveratrol have focused on cancer, neurological disorders, cardiovascular diseases, diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity. We found that for neurological disorders, cardiovascular diseases, and diabetes, the current clinical trials show that resveratrol was well tolerated and beneficially influenced disease biomarkers. However resveratrol had ambiguous and sometimes even detrimental effects in certain types of cancers and in NAFLD. In most of the clinical trials, the major obstacle presented was resveratrol's poor bioavailability. Thus, this work provides useful considerations for the planning and design of future pre-clinical and clinical research on resveratrol.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28890840

RESUMO

Estrogen-related receptor alpha (ERRα) is an orphan nuclear factor that is a master regulator of cellular energy metabolism. ERRα is overexpressed in a variety of tumors, including ovarian, prostate, colorectal, cervical and breast, and is associated with a more aggressive tumor and a worse outcome. In breast cancer, specifically, high ERRα expression is associated with an increased rate of recurrence and a poor prognosis. Because of the common functions of ERRα and the mTORC1/S6K1 signaling pathway in regulation of cellular metabolism and breast cancer pathogenesis, we focused on investigating the biochemical relationship between ERRα and S6K1. We found that ERRα negatively regulates S6K1 expression by directly binding to its promoter. Downregulation of ERRα expression sensitized ERα-negative breast cancer cells to mTORC1/S6K1 inhibitors. Therefore, our results show that combinatorial inhibition of ERRα and mTORC1/S6K1 may have clinical utility in treatment of triple-negative breast cancer, and warrants further investigation.

7.
J Cell Physiol ; 232(2): 436-446, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27225870

RESUMO

Loss of TSC1 function, a crucial negative regulator of mTOR signaling, is a common alteration in bladder cancer. Mutations in other members of the PI3K pathway, leading to mTOR activation, are also found in bladder cancer. This provides rationale for targeting mTOR for treatment of bladder cancer characterized by TSC1 mutations and/or mTOR activation. In this study, we asked whether combination treatment with rapamycin and resveratrol could be effective in concurrently inhibiting mTOR and PI3K signaling and inducing cell death in bladder cancer cells. In combination with rapamycin, resveratrol was able to block rapamycin-induced Akt activation, while maintaining mTOR pathway inhibition. In addition, combination treatment with rapamycin and resveratrol induced cell death specifically in TSC1-/- MEF cells, and not in wild-type MEFs. Similarly, resveratrol alone or in combination with rapamycin induced cell death in human bladder cancer cell lines. These data indicate that administration of resveratrol together with rapamycin may be a promising therapeutic option for treatment of bladder cancer. J. Cell. Physiol. 232: 436-446, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sirolimo/uso terapêutico , Estilbenos/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Mamíferos/citologia , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Estilbenos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/patologia
8.
Cell Cycle ; 15(23): 3230-3239, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27753535

RESUMO

Homologous recombination (HR) is a conserved process that maintains genome stability and cell survival by repairing DNA double-strand breaks (DSBs). The RAD51-related family of proteins is involved in repair of DSBs; consequently, deregulation of RAD51 causes chromosomal rearrangements and stimulates tumorigenesis. RAD51C has been identified as a potential tumor suppressor and a breast and ovarian cancer susceptibility gene. Recent studies have also implicated estrogen as a DNA-damaging agent that causes DSBs. We found that in ERα-positive breast cancer cells, estrogen transcriptionally regulates RAD51C expression in ERα-dependent mechanism. Moreover, estrogen induces RAD51C assembly into nuclear foci at DSBs, which is a precursor to RAD51 complex recruitment to the nucleus. Additionally, disruption of ERα signaling by either anti-estrogens or siRNA prevented estrogen induced upregulation of RAD51C. We have also found an association of a worse clinical outcome between RAD51C expression and ERα status of tumors. These findings provide insight into the mechanism of genomic instability in ERα-positive breast cancer and suggest that individuals with mutations in RAD51C that are exposed to estrogen would be more susceptible to accumulation of DNA damage, leading to cancer progression.


Assuntos
Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Estrogênios/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Transporte Proteico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...